
BBQ: A Block-based Bounded Queue for Exchanging Data and Profiling

Jiawei Wang1,2,3, Diogo Behrens1,2, Ming Fu1,2,∗, Lilith Oberhauser1,2, Jonas Oberhauser1,2,
Jitang Lei1,2, Geng Chen2, Hermann Härtig3, and Haibo Chen2,4

1Huawei Dresden Research Center 2Huawei OS Kernel Lab
3Technische Universität Dresden 4Shanghai Jiao Tong University

Abstract
Concurrent bounded queues have been widely used for ex-
changing data and profiling in operating systems, databases,
and multithreaded applications. The performance of state-of-
the-art queues is limited by the interference between mul-
tiple enqueues (enq-enq), multiple dequeues (deq-deq), or
enqueues and dequeues (enq-deq), negatively affecting their
latency and scalability. Although some existing designs em-
ploy optimizations to reduce deq-deq and enq-enq interfer-
ence, they often neglect the enq-deq case. In fact, such partial
optimizations may inadvertently increase interference else-
where and result in performance degradation.

We present Block-based Bounded Queue (BBQ), a novel
ringbuffer design that splits the entire buffer into multiple
blocks. This eliminates enq-deq interference on concurrency
control variables when producers and consumers operate
on different blocks. Furthermore, the block-based design is
amenable to existing optimizations, e.g., using the more scal-
able fetch-and-add instruction. Our evaluation shows that
BBQ outperforms several industrial ringbuffers. For example,
in single-producer/single-consumer micro-benchmarks, BBQ
yields 11.3x to 42.4x higher throughput than the ringbuffers
from Linux kernel, DPDK, Boost, and Folly libraries. In real-
world scenarios, BBQ achieves up to 1.5x, 50.5x, and 11.1x
performance improvements in benchmarks of DPDK, Linux
io_uring, and Disruptor, respectively. We verified and opti-
mized BBQ on weak memory models with a model-checking-
based framework.

1 Introduction

Concurrent bounded queues are pervasive in operating sys-
tems, databases, and multithreaded applications. They trans-
port data, distribute work, and are used to profile and decouple
components. Their performance is crucial for achieving highly
scalable and low-latency operation of numerous systems.

The main factor determining performance of a queue is
the interference between concurrent operations, i.e., between

*Ming Fu (ming.fu@huawei.com) is the corresponding author.

enqueues, between dequeues, or between enqueues and de-
queues. We refer to these as enq-enq, deq-deq, and enq-deq in-
terference, respectively. Interferences manifest in the form of
1) cache-line bouncing when control variables are frequently
updated by one thread and read by another, e.g., to check if the
queue has data, and 2) serialization of contended updates to
control variables, e.g., when multiple threads try to create or
read the same entry. Existing queue designs often employ op-
timizations to reduce enq-enq and deq-deq interference, e.g.,
updating control variables with “always-successful” atomic
instructions such as fetch-and-add (FAA) [14, 40, 41, 47] be-
cause, in principle, they can be serialized in hardware and
thus perform better under high contention than software so-
lutions with compare-and-swap (CAS) [38, 43]. However, ex-
isting designs tend to neglect the enq-deq interference even
though it substantially impacts performance, in particular in
the common single producer or single consumer scenarios,
e.g., ringbuffers for asynchronous I/O in Linux io_uring [13].

In fact, some queue optimizations from the literature [38,
40] inadvertently increase the enq-deq interference or intro-
duce undesirable side-effects that degrade performance in
uncontended cases. For example, dequeue operations using
FAA must either block in a pessimistic way [14], or risk over-
taking slow concurrent enqueue operations; to avoid data
corruption, such enqueue operations must be invalidated and
repeated later [40]. Besides harming performance, such strate-
gies cannot be applied for online profiling where enqueues
writing a log should not be delayed by dequeues that read the
log. Similarly, some techniques that avoid concurrent enqueue
operations from waiting for each other also require dequeue
operations to invalidate parts of the queue [38]. Strategies
to improve performance of these techniques by reducing the
number of invalidations, e.g., busy-looping before invalidat-
ing [38, 40], drastically increase the latency of dequeue calls
on empty queues, making them unsuitable for certain work-
loads, e.g., multiplexing across multiple message queues.

We present Block-based Bounded Queue (BBQ), a novel
ringbuffer design that dramatically reduces the enq-deq in-
terference by splitting the entire buffer into multiple blocks
and splitting the control variables into the block-level and
queue-level variables. In the common case, enqueue and de-

mailto:ming.fu@huawei.com

queue only access block-level control variables of their current
blocks. When enqueue and dequeue work on different blocks,
the disjoint control variables avoid any interference between
these operations. That is particularly important in reducing
the cache-line bouncing of head and tail pointers when deter-
mining whether the queue is full or empty. Furthermore, we
use hardware-serialized FAA operations to update block-level
control variables for allocating entries inside blocks, while
queue-level control variables on the other hand are updated
with slower, software-serialized CAS operations; since this is
only necessary in the rare event that operations need to move
to the next block, the performance impact of these operations
is negligible. Our block-based approach allows us to perform
these optimizations without incurring undesirable side-effects.
Finally, to ensure that BBQ correctly works on weak memory
models (WMMs) — including those from Arm [2] and RISC-
V [28] architectures — we have verified and optimized the
barriers and fences of BBQ with the VSYNC framework [42].

In contrast to previous work, our block-based approach is
applicable to a large spectrum of scenarios. BBQ supports
single or multiple producers/consumers, fixed- or variable-
sized entries, and retry-new and drop-old modes. Retry-new
is the typical producer-consumer mode for message passing
and work distribution scenarios; drop-old is a lossy/overwrite
mode for profiling/tracing [5, 24] and debugging [44] scenar-
ios, in which producers may overwrite unconsumed data if
the buffer is full.

In our experimental evaluation, BBQ outperforms several
industrial queues and ringbuffers. In single-producer/single-
consumer micro-benchmarks, BBQ yields 11.3x to 42.4x
higher throughput than Linux circular buffer [22], DPDK
ring buffer [9], Boost lock-free queue [4], and Meta’s Folly
queue [14]. In real-world scenarios, BBQ achieves up to 1.5x,
50.5x, and 11.1x performance improvements in benchmarks
of DPDK, Linux io_uring [13], and LMAX Disruptor [23], re-
spectively. In our profiling benchmarks, BBQ enabled with the
lossy/overwrite mode achieves up to 4.7x higher throughput
than Google’s Guava EvictingQueue [15] and Apache Com-
mons CircularFifoQueue [1], and can sustain up to 143.2x
lower enqueue latency than the other two queues.

The remainder of this work is organized as follows. In
Sec. 2, we gradually introduce the challenges of reducing the
interference between enqueue and dequeue operations, dis-
cussing how existing queues tackle these challenges, and the
limitations of their solutions. In Sec. 3, we present our block-
based approach and the high-level design of BBQ. In Sec. 4,
we describe BBQ implementation including the support for
retry-new and drop-old modes and variable-sized entries. In
Sec. 5, we report our results in verifying BBQ on WMMs and
relaxing its memory barriers. In Sec. 6, we experimentally
compare the performance of BBQ and several industry-grade
concurrent queues. In Sec. 7, we conclude our work.

P.headC.tail P.tailC.head

1 enqueue(data){
2 again:
3 ph = LOAD(P.head);
4 pn = ph + 1;
5 if (pn > LOAD(C.tail) + SZ)
6 return FULL;
7 if (!CAS(P.head, ph, pn))
8 goto again;
9 entry[pn % SZ] = data;

10 while(LOAD(P.tail) != ph);
11 STORE(P.tail, pn);
12 return OK;
13 }

14 dequeue(){
15 again:
16 ch = LOAD(C.head);
17 cn = ch + 1;
18 if (cn > LOAD(P.tail))
19 return EMPTY;
20 if (!CAS(C.head, ch, cn))
21 goto again;
22 data = entry[cn % SZ];
23 while(LOAD(C.tail) != ch);
24 STORE(C.tail, cn);
25 return data;
26 }

Figure 1: A simple MPMC bounded queue. CAS, LOAD, and
STORE are atomic operations with sequentially consistent se-
mantics on WMMs. C.head and C.tail refer to consumers;
P.head and P.tail refer to producers.

2 Background and Related Work

We now introduce scalability challenges of bounded queue
designs and discuss related work and their limitations. Fig-
ure 1 illustrates the discussion in this section depicting a sim-
ple lockless bounded queue with multiple-producer multiple-
consumer (MPMC) support, which is the algorithm behind the
widely-used DPDK ringbuffer [9].

Producers first check whether the queue is full (Line 5) and
then try to allocate the next entry via CAS (Line 7). Upon suc-
cess, the producer copies the data into the entry and commits
it (Line 11). Similarly, consumers first try to reserve an entry
(Line 20). Upon success, the consumer copies the data back
and confirms that the data has been consumed (Line 24).

(P1) Consumer contention on C.head. A straightforward
form of deq-deq interference is caused by multiple consumers
concurrently calling dequeue and contending on updates to
C.head. Several works (on bounded and unbounded queues)
tackle this contention using FAA to update the head [38,40,43]
because FAA is more scalable than CAS on common architec-
tures. However, since FAA cannot conditionally update the
memory location, it may break, for example, the invariant of
C.head never exceeding P.tail. To address that, Meta’s Folly
queue [14] implements the partial, not total dequeue method,
which spins until dequeue succeeds [33]. With such interface,
dequeue calls return only if there is an entry to consume,
otherwise blocking the thread indefinitely.

Another solution is to “fix the state” when C.head ex-
ceeds P.head by invaliding entries between them, as done
by LCRQ [38]. Unfortunately, that causes consumers to ham-
per the progress of producers. SCQ [40] solves the producer
starvation by limiting the number of consecutive invalida-
tions with a threshold, as we describe below. Nevertheless,
the remaining invalidations still degrade the enqueue perfor-
mance, and the SCQ implementation [39] employs a trick

to reduce the probability of invalidating entries: Consumers
check several times in a loop whether the entry has been
committed before actually invalidating it. Unfortunately, this
delayed invalidation trick increases the latency of dequeue
when the queue is empty by several orders of magnitude —
we experimentally demonstrate this empty-deq in Sec. 6.2.3.
(P2) Producer contention on P.head. A straightforward
form of enq-enq interference is caused by multiple producers
concurrently calling enqueue and contending on updates to
P.head. Here, Folly queue again resorts to FAA and turns en-
queue into a partial method, which waits until free entries are
available, potentially blocking the thread forever.

Nikolaev proposes a novel idea to implement a total queue
while using FAA [40]: SCQD combines two SCQ index queues
(fq and aq) with a data array. Upon enqueue on SCQD, the
thread gets an index from fq, copies the data in the correspond-
ing entry of the data array, and then puts the index into aq.
Dequeueing works the other way around. The index queues
are total on dequeue but partial on enqueue, i.e., dequeue re-
turns EMPTY if the queue is empty, whereas enqueue loops until
it succeeds. Nevertheless, the combined SCQD is still total
since index queues are never full, i.e., the number of indexes
is fixed and matches the maximum size of the index queues.
Besides the constant overhead introduced by index queues,
the high latency caused by the empty-deq issue in each SCQ
index queue translates into high latency in SCQD for both
empty-deq and full-enq cases (see Sec. 6.2).
(P3) Delayed P.tail and C.tail updates. Another typical enq-
enq or deq-deq interference arises from the in-order policy
to commit (resp. consume) entries — the default policy in
DPDK ringbuffer. The head/tail mechanism, which resem-
bles a ticket lock, brings issues analogous to Lock-Holder- and
Lock-Waiter-Preemption [45]. For example, the preemption
of a thread that is about to update P.tail (resp. C.tail) causes
other enqueue calls (resp. dequeue calls) to uselessly spin
(Lines 10 and 23) for arbitrary time periods.

Several queues implement, instead, out-of-order policies,
allowing producers (resp. consumers) to commit (resp. con-
sume) entries independently. In LCRQ, once consumers incre-
ment C.head such that it reaches P.tail, they start invalidating
entries until C.head reaches P.head. That prevents producers
from committing entries at indexes preceding C.tail, ensuring
linearizability [34]. This approach starves producers and even
livelocks the queue. For example, a consumer in an ongoing
dequeue invalidates an entry when C.head = P.tail < P.head;
the producer in the ongoing enqueue increments P.head to
retry; the consumer realizes C.head still did not reach P.head
and retries consuming, potentially invalidating the new entry
if not yet committed; and so on.

SCQ uses a threshold T to restrict the number of consec-
utive entries invalidated, and, thus, avoid livelocks. When a
consumer invalidates an entry, it atomically decrements T .
A successful enqueue resets T to its initial constant 3n− 1,
where n is twice the queue capacity. This constant is care-

fully derived to guarantee linearizability is never violated [40].
However, it introduces additional contention among produc-
ers and consumers updating the threshold variable, which has
to be again mitigated by delayed invalidation.

DPDK [9] ringbuffer implements a more practical out-of-
order policy called RTS mode [27], which trades lineariz-
ability to avoid invalidations. Consumers never move C.tail
forward if C.tail would reach P.tail, returning EMPTY despite of
any committed entry between P.tail and P.head; thus, violating
linearizability. Producers employ the reciprocal strategy.

To enable out-of-order commits, RTS records whether all
entries between P.tail and P.head are committed. The prohib-
ited window between P.tail and P.head has dynamic length
because P.tail is moved forward only once the last producer
writing between P.tail and P.head commits. If producers would
keep allocating entries, they would keep incrementing P.head
and extending the prohibited window up to the total capacity
of the queue. To prevent consumers from starving, RTS sets
up a threshold to limit the maximum distance between P.tail
and P.head. If that distance is reached, enqueue blocks until
all producers between P.tail and P.head have committed. RTS
enables out-of-order consumes with the recipocral approach.

(P4) Causes of enq-deq interference. There are two sources
of interference between enqueues and dequeues: algorithmic
and cache-related. While focusing on enq-enq or deq-deq
cases, previous techniques introduce algorithmic interferences
between enqueue and dequeue, e.g., requiring producers and
consumers to retry operations, increasing latency, potentially
causing thread starvation, or even livelock.

Let us again consider the simple algorithm of Fig. 1. Even
though cache misses caused by writing or reading the data
cannot be eliminated, cache misses on the control variables
are relevant. Every time a producer calls enqueue, it allocates
an entry and increments P.tail. Every time a consumer calls
dequeue, it potentially suffers a cache miss by reading P.tail.
If the producer is far ahead the consumer, the cache misses
at P.tail seem unjustifiable. Similarly, the producer suffers
cache misses on C.tail even when there is plenty space in
the queue between producers and consumers. In contrast to
enq-enq and deq-deq, enq-deq interference is relevant even to
the single-consumer/single-producer scenario, an important
scenario for the industry. In Sec. 6, we experimentally show a
correlation between a strong decrease of L1 cache misses and
the performance improvements of BBQ (Sec. 3 and 4).

3 Design of BBQ

3.1 The Block-based Approach
BBQ splits the ringbuffer into blocks, as shown in Fig. 2.
Each block contains one or more entries, usually multiple,
depending on the configuration. The queue control variables
are also split into queue-level and block-level variables. Con-
trol variables C.head and P.head now point to blocks instead

re
se

rv
ed

co
ns
um

ed

co
m
m
itt
ed

P.head

re
se
rv
ed

co
ns
um

ed
co

m
m
itt
ed

al
lo
ca

te
d

al
lo
ca

te
d

co
m
m
itt
ed

re
se
rv
ed

al
lo
ca

te
dres
erv

ed
co
ns
um

ed

co
m
m
itt
ed

al
lo
ca

te
dco
ns
um

ed

P.tailC.headC.tail

co
m
m
itt
ed

al
lo
ca

te
d

co
ns
um

ed
re
se
rv
ed

Figure 2: Block-based bounded queue (BBQ).

of entries; P.tail and C.tail are unnecessary for the algorithm.
The block-level control variables include four cursors called
allocated, committed, reserved, and consumed, which
track the corresponding actions within each block.

The block-based approach greatly reduces the enq-deq in-
terference. After a block is fully committed, its producer cur-
sors (allocated/committed) remain unmodified until the
block is fully consumed, causing no additional cache misses
for consumers. Moreover, producers can always determine
whether a block is fully allocated without accessing consumer
cursors (reserved/consumed).

Multiple producers in the same block still contend on
allocated and committed. Fortunately, the block-based ap-
proach enables the enqueue operation to use FAA, avoids
costly invalidations, and still allows for a total method. Produc-
ers start using a block only once it has been fully consumed.
Therefore, inside the block, FAA never allocates an entry that
is not consumed yet, allowing enqueue to be total. FAA may
make allocated out of the bound of the block, but state
fixing is not required. Since each block has its own control
variables, an out-of-bound cursor in one block does not affect
the following block.

Although our dequeue operation employs CAS to avoid con-
sumers from invalidating entries currently used by producers,
BBQ still achieves similar or better performance than other
designs with FAA-based dequeues. To further improve perfor-
mance for machines with Armv8.1 [2] processors supporting
Large System Extensions [3] (LSE), BBQ uses the atomic
maximum instruction MAX instead of CAS in dequeue.

Finally, the block-based approach enables a practical out-
of-order policy similar to RTS mode of DPDK. In this case,
instead of updating control variables with double-width CAS,
BBQ employs more scalable FAA and MAX instructions.

3.2 BBQ from a Bird’s-eye View

In this section, we describe the high-level algorithm of BBQ,
as shown in Fig. 3.

Producers. To enqueue data, a producer first retrieves the
current value of P.head and the corresponding block identi-
fier (Line 4). Next, it tries allocating an entry in the block
(Line 5). If successful, the producer writes the data into entry
ety and commits it (Line 7). The allocation fails if the block
has already been fully allocated (Line 9). In this case, the

1 status := OK(T) | FULL | EMPTY | BUSY
2 status BBQ<T>::enqueue(T data){
3 loop:
4 (ph, blk) = get_phead_and_block();
5 switch (allocate_entry(blk)){
6 case allocated(ety):
7 commit_entry(ety, data);
8 return OK();
9 case BLOCK_DONE:
10 switch (advance_phead(ph)){
11 case NO_ENTRY: return FULL;
12 case NOT_AVAILABLE: return BUSY;
13 case SUCCESS: goto loop;
14 }
15 }
16 }
17 status BBQ<T>::dequeue(){
18 loop:
19 (ch, blk) = get_chead_and_block();
20 switch (reserve_entry(blk)){
21 case reserved(ety):
22 data = consume_entry(ety);
23 if (data != NULL) return OK(data);
24 else goto loop;
25 case NO_ENTRY: return EMPTY;
26 case NOT_AVAILABLE: return BUSY;
27 case BLOCK_DONE(vsn):
28 if (advance_chead(ch, vsn)) goto loop;
29 else return EMPTY;
30 }
31 }

Figure 3: High-level design of BBQ.

producer tries to advance P.head to the next block (Line 10).
If successful, the producer jumps back to the loop label and
retries the allocation (Line 13). In retry-new mode, advancing
P.head fails if the next block is not yet fully consumed, i.e.,
the whole queue is considered full. BBQ distinguishes the
failure reason: BUSY when some dequeue operation is ongoing
and FULL otherwise. Returning BUSY allows for custom back-
off implementations at the caller side, e.g., parking threads
after a number of retries. In drop-old mode, advancing P.head
does not fail except for a seldom case discussed in Sec. 4.3,
for which BUSY is returned.

Consumers. The dequeue operation is somewhat analogous
to enqueue. The consumer starts by retrieving the current
value of C.head and the corresponding block identifier. Next,
it attempts to reserve an entry to consume (Line 20), advanc-
ing reserved. If the reservation succeeds, the consumer reads
the data (Line 22) and advances consumed. In drop-old mode,
the consumer may have to retry consuming if the producers
have overwritten the block (Line 24). Reserving an entry can
fail in several ways. When the next entry in blk is allocated
but not yet committed, dequeue returns BUSY (Line 26). When
blk is not fully allocated and all committed entries were al-
ready consumed, dequeue returns EMPTY (Line 25). Finally,
when blk is fully committed and fully consumed, the con-
sumer tries advancing C.head (Line 28). Upon success, it
retries reserving an entry, jumping to loop. Otherwise, de-
queue returns EMPTY.

Progress guarantees. Similarly to DPDK ringbuffer, BBQ is
a deadlock-free queue, its progress depend on a fair scheduler.
In contrast to DPDK, BBQ is less affected by CPU oversub-
scription (see Figure 9g, Section 6). To see why this is the
case, consider the situation where DPDK producers form a
waiting chain: the last to allocate an entry can only commit
once the previous has committed its entry, and so on. This
waiting chain hampers the performance because the scheduler
is unlikely to unpark the preempted producers in the chain’s
order. In BBQ, there is no such waiting chain, i.e., producers
commit independently. Consumers may wait for producers
only in seldom cases. For example, a consumer waits for a
preempted producer on the same block if the producer has
allocated but not yet committed an entry. Nevertheless, any or-
der in which the fair scheduler unparks preempted producers
allows the consumer to make progress.

3.3 Two-Level Control Variables

Essentially, BBQ splits the control variables into two lev-
els, namely the queue-level and block-level variables (see
Fig. 2). Queue-level control variables point to blocks (C.head
and P.head), whereas block-level control variables to entries
(allocated, committed, reserved, and consumed).

Versions. As in other queues such as DPDK ringbuffer, con-
trol variables have to be versioned to identify multiple reuses
of the same memory locations and, in this way, avoid ABA
problems1. Therefore, queue-level control variables have two
fields, an index pointing to a block and a version identifying
how many rounds the whole queue has been reused. Similarly,
block-level control variables have an offset field pointing to
an entry within the block and a version field identifying how
many times the block has been reused.

Phantom heads. Before producers can allocate entries in a
block B, one producer has to reset B’s allocated cursor as
well as advance P.head to point to B. Without making both up-
dates atomic, whichever update executes first may trigger an
ABA problem as well. To allow both being updated atomically,
we introduce the concept of phantom head, which is based
on the following observation. The index and version values
of P.head can be inferred from the versions of all allocated
cursors in the queue (as described in Sec. 4.2.2). Similarly,
the phantom C.head can be inferred from the versions of all
reserved cursors. Since the phantom P.head (resp. phantom
C.head) is implicitely updated whenever any allocated cur-
sor (resp. reserved cursor) is updated, we use them instead
of queue-level head variables.

1Often algorithms try to guarantee operation atomicity by reading from a
control variable before and after the operation. If the same value A is read
both times, the programmer assumes absence of concurrent updates and
hence that the operation was atomic. This assumption breaks if other threads
can temporarily change the value to B 6= A and then back to A; algorithms in
which this situation can occur are said to suffer from the ABA problem [32].

Cached heads. In principle, phantom heads allow us to elim-
inate the C.head and P.head variables altogether. Unfortu-
nately, phantom heads are costly: To infer them, one needs
to compare the cursors of every block. Instead of eliminating
C.head and P.head, we consider them to be cached heads, i.e.,
potentially stale values of the phantom heads. Cached heads
only exist for performance reasons; their staleness does not
affect correctness.

4 Implementation of BBQ

Figure 4 shows the low-level detail of BBQ, including data-
fields, enqueue and dequeue operations for retry-new mode
and drop-old mode. The drop-old mode will be introduced in
Sec. 4.3.

4.1 Structure

Heads and cursors. BBQ has two queue-level Head variables
and four block-level Cursor variables in each block. Head
and Cursor types are 64-bit integers, which can be atomically
updated. We reserve two bit-segments in Head to represent
the version and index and two bit-segments in Cursor to
represent the version and offset. Given a total number of
blocks (BLOCK_NUM) and the capacity of a block (BLOCK_SIZE),
the segments have the following bit-lengths:

|Index| = log2(BLOCK_NUM) bits
|Offset| > log2(BLOCK_SIZE) bits
|Version| = 64−max(|Index|, |Offset|) bits

The bit-length of Offset is larger than log2(BLOCK_SIZE) to
allow for FAA-overflow detection. The Index and Offset are
the least significant bits of Head and Cursor, respectively;
Version bits immediately follow them; and reminder bits,
if existent, are set to 0 and ignored. That allows us to easily
manipulate these fields with FAA and MAX instructions.

For convenience, we access the bit-segments from Head
and Cursor variables as if they were regular fields named
idx, off, and vsn, e.g., allocated.idx. Moreover, we con-
struct variables (e.g., Head) with the short-hand notation
Head{.vsn=version, .idx=index}, initializing unspeci-
fied fields with 0. We may omit the type when clear from
the context.

Initially, idx and off in the first block are zero and for
remaining blocks off is set to BLOCK_SIZE. The initial value
of vsn will be introduced in Sec. 4.2.2.

Other types. Block has shared cursors, annotated with
shared<>, and an array of entries of type T (Line 38).
EntryDesc is an entry descriptor; it points to a block and con-
tains offset to location the actual entry and a version data-
consistency checks used in drop-old mode (Line 41). Finally,
BBQ contains the shared heads and an array of Block<T>.

1 <Head, Block> BBQ<T>::get_phead_and_block(){
2 ph = LOAD(phead);
3 return (ph, blocks[ph.idx]);
4 }
5 state BBQ<T>::allocate_entry(Block blk){
6 if (LOAD(blk.allocated).off >= BLOCK_SIZE)
7 return BLOCK_DONE;
8 old = FAA(blk.allocated, 1).off;
9 if (old >= BLOCK_SIZE)
10 return BLOCK_DONE;
11 return ALLOCATED(EntryDesc{.block=blk, .offset=old});
12 }
13 void BBQ<T>::commit_entry(EntryDesc e, T data){
14 e.block.entries[e.offset] = data;
15 ADD(e.block.committed, 1);
16 }
17 state BBQ<T>::advance_phead(Head ph) {
18 nblk = blocks[(ph.idx + 1) % BLOCK_NUM];

19 cons = LOAD(nblk.consumed);
20 if (cons.vsn < ph.vsn ||
21 (cons.vsn == ph.vsn && cons.off != BLOCK_SIZE)) {
22 reserved = LOAD(nblk.reserved);
23 if (reserved.off == cons.off) return NO_ENTRY;
24 else return NOT_AVAILABLE;
25 }

26 cmtd = LOAD(nblk.committed);
27 if (cmtd.vsn == ph.vsn && cmtd.off != BLOCK_SIZE)
28 return NOT_AVAILABLE;

29 MAX(nblk.committed, Cursor{.vsn=ph.vsn + 1});
30 MAX(nblk.allocated, Cursor{.vsn=ph.vsn + 1});
31 MAX(phead, ph + 1);
32 return SUCCESS;
33 }
34 class BBQ<T> {
35 shared<Head> phead, chead;
36 Block<T>[] blocks;
37 }
38 class Block<T> {
39 shared<Cursor> allocated, committed;
40 shared<Cursor> reserved, consumed;
41 T[] entries;
42 }
43 class EntryDesc {
44 Block block; Offset offset; Version version; }

45 <Head, Block> BBQ<T>::get_chead_and_block(){
46 ch = LOAD(chead);
47 return (ch, blocks[ch.idx]);
48 }
49 state BBQ<T>::reserve_entry(Block blk){
50 again:
51 reserved = LOAD(blk.reserved);
52 if (reserved.off < BLOCK_SIZE) {
53 committed = LOAD(blk.committed);
54 if (reserved.off == committed.off)
55 return NO_ENTRY;
56 if (committed.off != BLOCK_SIZE){
57 allocated = LOAD(blk.allocated);
58 if (allocated.off != committed.off)
59 return NOT_AVAILABLE;
60 }
61 if (MAX(blk.reserved, reserved + 1) == reserved)
62 return RESERVED((EntryDesc){.block=blk,
63 .offset=reserved.off, .version=reserved.vsn});
64 else goto again;
65 }
66 return BLOCK_DONE(reserved.vsn);
67 }
68 T BBQ<T>::consume_entry(EntryDesc e){
69 data = e.block.entries[e.offset];

70 ADD(e.block.consumed, 1);

71 allocated = LOAD(e.block.allocated);
72 if (allocated.vsn != e.version) return NULL;

73 return data;
74 }
75 bool BBQ<T>::advance_chead(Head ch, Version vsn){
76 nblk = blocks[(ch.idx + 1) % BLOCK_NUM];
77 committed = LOAD(nblk.committed);

78 if (committed.vsn != ch.vsn + 1)
79 return false;
80 MAX(nblk.consumed, Cursor{.vsn=ch.vsn + 1});
81 MAX(nblk.reserved, Cursor{.vsn=ch.vsn + 1});

82 if (committed.vsn < vsn + (ch.idx == 0))
83 return false;
84 MAX(nblk.reserved, Cursor{.vsn=committed.vsn});

85 MAX(chead, ch + 1);
86 return true;
87 }

retry-new mode drop-old mode

Figure 4: Low-level details of BBQ.

4.2 Operations
Enqueue and dequeue operations are divided into different
cases: First, when the allocation in the enqueue or the reser-
vation in the dequeue do not fail. Second, when enqueue or
dequeue have to advance respective heads to the next block.

4.2.1 Successful allocation/reservation

The producer uses FAA to allocate an entry (Line 8) and returns
its location as EntryDesc if there is enough space in the
current block (Line 11). A pre-check (Line 6) avoids endless
increasing of allocated when the queue is full, which could
cause FAA overflows and impact performance negatively. For
the consumer, the entry is reserved through MAX2 (Line 61),

2Unlike FAA, MAX provides conditional update semantics. Moreover, for
some cases, MAX has similar semantics to CAS but better performance observed

which atomically sets a variable if the given value is greater
than the variable’s value and returns the old value. Consumers
never pass producers (Line 54) and can read when out-of-
order commit are not ongoing in the same block, which means
all allocated entries are committed (Line 58).

4.2.2 Advancing to the next block

Monotonic version updates. Head and cursor versions are
initially zero. Both enqueue and dequeue calls start by reading
the current cached head (phead and chead, respectively) into
a local variable (ph and ch in Fig. 3). After failing to allocate
or reserve an entry, these calls try to advance the respective
phantom heads by calling advance_phead or advance_chead.

from experimental results. We use CAS and while loop to achieve the same
functionality for architectures that do not support MAX such as x86 [16].

These functions try to reset the cursors of the next block with
the previously read version of the cached head plus one (Lines
29, 30, 80, and 81 in Fig. 4). Subsequently, the functions try
update the cached head itself (Lines 31 and 85).

The reset of cursors and the update of cached head may
not always succeed. Consider the following example. Two
producers try to allocate entries at block B0 and fail. Both
have read phead with value {.vsn=0,.idx=0}. Now both
call advance_phead concurrently and are at Line 30. Producer
P1 stalls while producer P2 succeeds updating the allocated
cursor of block B1. P2 also allocates one or more entries such
that now B1’s allocated has the value {.vsn=1,.off=16}.
If now P1 would be able to succeed resetting allocated,
then the allocations of P2 would be lost. Nevertheless, to
avoid such ABA situations, the reset of cursors and update of
cached head do not have to be performed with an expensive
CAS. The recent MAX atomic instruction from Armv8.1-LSE
can provide the required monotonicity.

Invariants. Producers have to ensure they advance phead
only if the next block that has no unconsumed data. Con-
sumers have to ensure they advance chead only if the next
block has committed data.

We guarantee these invariants by ensuring that the ver-
sion difference between phantom phead and phantom chead
never exceeds 1. When producers advance phead and re-
set the allocated and committed cursors of the next block
with version ph.vsn+1 (Line 30), the consumed cursor must
have version ph.vsn (Line 21). Similarly, when consumers
advance chead and reset the reserved and consumed cur-
sors of the next block with version ch.vsn+1 (Line 80), the
committed cursor must have version ch.vsn+1 (Line 79).

Order matters. Often the order in which shared variables
are accessed is crucial for correctness. For example, reading
reserved, committed, and allocated variables (Lines 51,
53, and 57) in a different order can cause the consumer to
read garbage. Moreover, updating cached heads (Lines 31 and
85) must happen after updating block-level variables (Lines
29, 30, 80, and 81), otherwise blocks may be fully skipped.

To guarantee shared variables are accessed in the program
order of Fig. 4 on architectures with weak memory models,
C/C++ implementations of BBQ can employ atomic LOAD,
STORE, MAX, FAA, and CAS instructions with sequentially con-
sistent memory barriers (see C11/C++11 atomics [6]). In
Sec. 5, we report a correct relaxation of these barriers.

4.3 Drop-old Mode

Unlike the retry-new mode, where producers cannot insert
data when the queue is full, in drop-old mode, producers
continue to write even if the data is not yet consumed. Con-
sequently, producers no longer depend on the consumers to
make progress. The FIFO property still holds, except that
some data might be lost. In other words, entries are consumed

in the order in which they were allocated, but some committed
entries may not be consumed.
Speculative reads. Drop-old mode is widely used in profil-
ing scenarios, where enqueue calls writing a log should not
be delayed by dequeue calls that read the log. To reduce the
chances of dequeue calls interfering with enqueue calls, con-
sumers read data in a speculative fashion. The consumer first
reads the data and then checks whether it has been overwritten.
If so, it discards the data and tries reserving another entry.
From retry-new to drop-old mode. A few differences exist
between retry-new and drop-old mode. First, producers avoid
advancing to blocks that are still not fully committed in the
previous round, returning BUSY (Lines 27 and 28).

Second, consumers guarantee FIFO order by checking if
the version of the next block is greater than or equal to the
current one (Line 82). If that is the case, reserved is reset
with the version of committed (Line 84), indicating the block
is ready to be read. The first block is a special case because,
in contrast to other blocks, its version is always off-by-one.
Therefore, we add 1 to the comparison if ch.idx == 0.

Third, the data-consistency check is based on the fact that a
block is not overwritten as long as allocated and reserved
versions are equal. Therefore, before reading data, we record
the reserved version (Line 63), and after copying the data
from the entry, we check if corresponding allocated version
still matches the reserved (Line 72).

4.4 Variable-sized Entries
BBQ can support variable-sized entries with minor algorith-
mic changes. Each entry has an additional metadata size to
support different entry sizes in one queue. Block-local cursors
and BLOCK_SIZE indicate the space of entries instead of their
number. MAX at Line 61 is no longer sufficient; CAS must be
used instead.
Dummy entry. Unlike the fixed-size version of BBQ, where
entries can exactly fill up a block, here, the remaining space
of a block might not be enough to contain the new entry. In
such cases, we mark the space with a dummy entry and return
BLOCK_DONE to trigger a retry in the next block. Since enqueue
uses FAA, the producers that cause allocated go over the
boundary marks the dummy entry by setting its size to zero
and commits it. Consumers that read an entry with size zero
ignore the dummy entry and retry in the next block. Upon
reading the dummy entry, the consumer also sets consumed
to be equal to BLOCK_SIZE.

4.5 Other Implementation Details
We have implemented BBQ in C and Java. We have also im-
plemented a wrapper with the Java Native Interface (JNI) [20]
to call the C version from Java.

Finally, we have optimized BBQ for SPSC scenarios as fol-
lows: (1) phead and chead are no longer shared variables and

can be accessed with non-atomic loads/stores. (2) allocated
and committed (resp. reserved and consumers) are merged
into one variable and updated with STORE.

5 Verification and Optimization of BBQ

Concurrent data structures are complicated beasts and are easy
to get wrong [30]. To increase confidence in our C implemen-
tation and find intricate bugs, we generate a series of small
hand-crafted tests that can trigger corner cases in the algo-
rithm and then use VSYNC [42], an extension to the GenMC
model checker [36]. The tool generates all executions of the
algorithm on those tests, including executions that can only
happen on WMMs, exercising the following critical corner
cases: (1) queue full or empty, (2) FIFO, (3) wrap-around, and
(4) termination of bounded loops with bounded effect [37,42].

Bugs. We found three concurrency bugs in an earlier version
of the drop-old mode of BBQ.

1. A test revealed a bug in which enqueue operations
incorrectly returned BUSY. The block was detected as
NOT_AVAILABLE because, in that version, the condition
at Line 27 was committed.off == BLOCK_SIZE &&
committed.vsn == ph.vsn. Therefore, even if other
producers reset the next block and have the space to allo-
cate, the block would still be NOT_AVAILABLE. That violated
linearizability.

2. We have found a termination bug in which the checking
in Line 82 was written as blk.committed.vsn >= nblk
.committed.vsn, missing the special case of the version
number in the first block, which may let consumers ad-
vancing the block forever if the queue is empty and all
blocks happen to have the same version number.

3. The wrap-around test revealed a bug due to a missing
fence, where readers could return incorrect data when a
fast writer overwrote the entry they were currently reading.

We found these bugs through the verification with model
checking. They were not found during stress testing, nor by
running the small test cases directly on hardware. However,
we could retrospectively construct test cases that reproduce
these bugs on real hardware. Concurrent algorithms, espe-
cially those using complicated synchronization such as drop-
old mode, are hard to get right using traditional methods.

Barrier optimization. We used VSYNC to run the mem-
ory barrier optimization for WMMs. The results consistent
with the order analyze of reading/updating shared variables
in Sec. 4.2.2. For the fixed entry size version, 14 atomic in-
structions with full memory barriers are optimized to 3 release
barriers, 3 acquire barriers, and 8 relaxed barriers, respectively.

6 Evaluation

6.1 Environment Setup

Hardware. All of our experiments are performed on three
x86 machines with 88, 96, and 12 hyperthreads, respectively
(denoted as x86-88T, x86-96T, and x86-12T), and an ARM
machine with 96 cores (arm-96T). x86-88T and x86-96T are
connected through two 10Gbps links.

Software. On these servers, we installed Ubuntu 20.04.3 LTS,
with Linux kernel 5.4.0. We use Linux perf [26] to get results
of L1 cache misses, the version of it is the same with the
Linux kernel. Java-based experiments use JDK v11 [19].

6.2 Microbenchmarks

Workloads. We have the following 3 workloads for mi-
crobenchmarks implemented in C/C++ and Java:
• simple: Each producer or consumer has its own thread,

where they keep executing enqueue or dequeue operations
in a loop. Data is validated after each dequeue.

• complex: Based on the simple workload. Producers and
consumers allocate space for data, preform enqueue and
dequeue then manually free (C/C++ version) or let JVM
garbage collection it [46] (Java version). Additionally, each
operation also performs a deterministic random busy-loop
of at most one hundred nop instructions.

• profiling: Based on the simple workload. The throughput
of producers and consumers is fixed at 10kop/s and 1kop/s,
respectively.

Thread affinity. For MPSC or SPMC scenarios, we assign
a single producer or consumer at the first core/hyperthread
and then distribute the other threads sequentially to cores/hy-
perthreads. For MPMC, we assign producers and consumers
interleaved one by one; if their number differs, the surplus is
assigned at the end.

Experiments. We perform the following experiments, each
measuring a different metric:
• throughput: Total number of consumed entries per second.
• data-latency: Average time each data stays in the queue.
• op-latency: Average latency of each enqueue or dequeue

operation.
• cache-miss: Average number of L1 cache misses per con-

sumed entry, measured with Linux perf.
• fairness: Throughput of each producer and consumer (only

for MPSC and SPMC).
• full/empty: Latency of enqueue when the queue becomes

full and latency of dequeue when the queue becomes empty
(only used with simple workload).

• oversubscription: Throughput with more producers and con-
sumers than than cores/hyperthreads.

Each experiment runs 3 times. If not specified otherwise,
solid lines represent average results; shaded area represents

4P1C throughput

1 5 10 15 20 25#total entries (log)
1

5

10

15

#b
lo

ck
s (

lo
g)

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 (o

p/
s)

1e7
4P1C latency

1 5 10 15 20 25#total entries (log)
1

5

10

15

#b
lo

ck
s (

lo
g)

10^4

10^5

10^6

La
te

nc
y

(n
s/

op
)

Figure 5: BBQ throughput and latency varying number of
blocks and entries (x86-88T).

0 23 47 71 95
#producers

1
2
3

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

cas
faa-lxsx
faa-lse

CAS or FAA

0 23 47 71 95
#producers

1

2

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

fixed
varied

Varied entry size

0 23 47 71 95
#producers

1

2

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

nr-prod
sr-cons
sr-prod

Drop-old

Figure 6: BBQ throughput with CAS and FAA; with support for
variable-sized entries; and with drop-old mode (arm-96T).

standard deviation; and vertical dashed lines indicate when
threads cross NUMA nodes, are assigned to hyperthreads in
the same core, or are oversubscribed.

Configuration. The data size is always 8 bytes, a size all
queues can support. For the data-latency experiment, the num-
ber of entries is around 128. For the other experiments, the
buffer size is 32k bytes unless specified otherwise.

6.2.1 BBQ Parameters and Design Choices

We start by evaluating parameters and design choices of BBQ.

Configuring the number of blocks. Figure 5 shows through-
put and data-latency experiments for BBQ with four pro-
ducers and one consumer. The color scale shows the ex-
isting trade-off between number of entries and number
of blocks; users have to be aware of that when choos-
ing the buffer size and number of blocks. We use the
following heuristic function to determine the number of
blocks in all rest experiments: number of blocks (log) =
max(1,bnumber of entries (log)/4c).
Performance impact of FAA. Figure 6 shows the results of
an MPSC throughput experiment on our Arm machine. BBQ
is configured to use FAA instruction from Armv8.1 LSE, stan-
dard FAA and CAS implemented with load-exclusive and store-
exclusive instructions. Except for the 1 thread case, LSE-
based FAA shows the best scalability, outperforming the other
two by at least 5 times.

Support for variable-sized entries. Figure 6 also shows the
throughput of the BBQ with fixed- and variable-sized entries.
The size of each data is the same, yet the varied entry version
has to store additional size information for every entry. Never-
theless, the throughput difference between both is negligible.

Consumer-producer interference in drop-old mode. Fi-
nally, Figure 6 shows the throughput of BBQ with drop-old
mode in two configurations: MPSC and MPNC (multiple-
producer/no-consumer). The throughput of the producers (nr-
prod) with no consumers is less than 8% higher than with
consumer (sr-prod). Moreover, the consumers manage to con-
sume at least 99.97% of the entries except for the 1 thread
case (sr-cons). These results illustrate that consumers with
the speculative-read method incur a rather minor interference
on producers — please refer to Sec. 6.2.3 for a baseline with
existing implementations.

6.2.2 State-of-the-art Comparison: Retry-new Mode

We now compare BBQ against 5 state-of-the-art bounded
queues: dpdkrb, DPDK ringbuffer v21.08 [9]; scqd, a lock-
free bounded queue [40]; linuxrb, the ringbuffer in the Linux
kernel v5.16 [22]; boostq, the bounded queue in C++ Boost
libraries v1.71 [4]; and follyq, the bounded queue (with total
method) [25] in Meta’s open-source Folly library v2021.11.8.
For dpdkrb and follyq, we use their SPSC versions to run
corresponding SPSC experiments.
Effectiveness of the Block-based Approach. To isolate the
effect of the blocks, we first focus on SPSC experiments be-
cause BBQ do not profit from FAA in such scenarios. Figure 7
shows that BBQ greatly outperforms all other bounded queues
in all experiments. For the simple workload, BBQ yields 11.3x
to 42.4x higher throughput than other libraries. The through-
put of BBQ is 1.41 ·108 op/s, while the second-best one follyq
is 1.24 · 107 op/s. For the complex workload, which has a
random busy-loop to limit the maximum throughput, BBQ
still outperforms follyq by 2x. BBQ’s better performance is
mainly due to the massive decrease in L1 cache misses with
the block-based approach (notice the y-axis log scale).
Throughput in MPSC and SPMC scenarios. Figures 9a and
9b show BBQ performing on par or better than other queues in
the simple and complex workloads. For MPSC scenarios, BBQ
performs up to 10.13x and 3.65x faster than the second-best
queue, respectively. For SPMC scenarios, BBQ performs up
to 1.88x and 2.39x faster than the second-best queue, respec-
tively.

The throughput difference between MPSC and SPMC re-
sults can be attributed in part to the different L1 cache misses
measurements (see Fig. 9c). BBQ consumers employ CAS op-
erations in every dequeue, and these can fail and have to be
retried, each time suffering another cache miss.
Data latency. We measure the average time data stays in
the queue in the complex workload, as shown in Fig. 9d.
For MPSC case, BBQ performs consistently better than other
bounded queues; up to 17.22x lower latency than the second-
best queue. For the SPMC case, scqd performs best, up to
7.45x lower latency than BBQ. That is an artifact of the de-
layed invalidation trick (see Sec. 2): Once the queue is empty
(C.head = P.tail), consumers invalidate the entries pointed by
C.head after a delay. Since consumers first increment C.head
and then wait, multiple consumers will be pending on differ-

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d0

1

Th
ro

ug
hp

ut
 (o

p/
s) 1e8

(a) simple

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d0

1

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

(b) complex

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d

100

101

L1
 c

ac
he

 m
iss

(c) cache-miss

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d

104

105

La
te

nc
y

(n
s/

op
)

(d) data-latency

Figure 7: SPSC comparison of BBQ against state-of-the-art on x86-88T.

bbq
dpdkrb
linuxrb

boostq
follyq
scqd

Figure 8: Legend of Fig. 9

M
P

S
C

2 21 43 65 87
#producers

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (o

p/
s)

1e7

2 21 43 65 87
#producers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s)

1e7

2 21 43 65 87
#producers

101

102
L1

 c
ac

he
 m

iss

2 21 43 65 87
#producers

105

107

La
te

nc
y

(n
s/

op
)

2 21 43 65 87
#producers

100

102

104

La
te

nc
y

(n
s/

op
)

2 21 43 65 87
#producers

100

101

Th
pt

 (m
ax

 /
m

in
)

2 11 23 35 47 59
#producers

100

103

106

Th
ro

ug
hp

ut
 (o

p/
s)

S
P

M
C

2 21 43 65 87
#consumers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s)

1e7

(a) simple

2 21 43 65 87
#consumers

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (o

p/
s)

1e6

(b) complex

2 21 43 65 87
#consumers

101

102

L1
 c

ac
he

 m
iss

(c) cache-miss

2 21 43 65 87
#consumers

104

106

La
te

nc
y

(n
s/

op
)

(d) data-latency

2 21 43 65 87
#consumers

100

102

104

La
te

nc
y

(n
s/

op
)

(e) full/empty

2 21 43 65 87
#consumers

100

101

Th
pt

 (m
ax

 /
m

in
)

(f) fairness

2 11 23 35 47 59
#consumers

100

103

106

Th
ro

ug
hp

ut
 (o

p/
s)

(g) oversubscription

Figure 9: MPSC and SPMC comparison of BBQ against state-of-the-art on x86-88T (and x86-12T for oversubscription).

ent entries. As soon as the producer commits a new entry, one
consumer aborts its delay and immediately returns the data.

Full and empty queues. Figure 9e shows the latency for
failed enqueue on a full queue (top figure), and failed dequeue
on an empty queue (bottom figure). In such scenarios, the
delay invalidation of scqd incurs a high cost: the latency
of failed operations in scqd is around 1000x higher than in
most other queues. For linuxrb, the latency increases with
the number of producers/consumers due to its coarse-grained
locking.

Fairness between producers or consumers. Figure 9f
shows the relation between maximum and minimum through-
put of producers (top figure) and consumers (bottom figure).
linuxrb provides exceptional fairness because it relies on a fair
spinlock3. Other queues show unfair throughput after crossing
the first NUMA node (at 22 producers/consumers) except for
scqd, which becomes unfair when hyperthreads of the same
cores start being used (at 44 producers/consumers).

Oversubscription effects. Figure 9g shows the results of our
oversubscription experiment on x86-12T with up to 5x more
threads than hyperthreads. Both dpdkrb and linuxrb are highly
affected by oversubscription; the former due to their in-order
policy (see Sec. 2), the latter due to its coarse-grained locking.
Under oversubscription (i.e., with more than 12 threads), BBQ
outperforms the second-best queue by a small margin: 2.22x
in MPSC and 1.23x in SPMC scenarios.

3In our userspace port of linuxrb, we employ a ticket lock.

6.2.3 State-of-the-art Comparison: Drop-old Mode

We now compare BBQ with other two bounded queues that
support overwriting old values, namely EvictingQueue from
Google Core Libraries Guava [15], and CircularFifoQueue
from Apache Commons [1]. The experiments are conducted
on the arm-96T machine.

Producer performance. Figure 10a shows the enqueue
throughput with no consumers for the complex workload. On
the one hand, BBQ-JNI yields 3.2x higher enqueue through-
put than EvictingQueue and CircularFifoQueue. On the other
hand, BBQ yields an enqueue throughput rather similar to
them. Intuitively, BBQ-JNI has a better performance since
employs real FAA instructions, whereas, in the Java version of
BBQ, the JVM translates FAA into CAS [35].

Figure 10c shows the enqueue latency, again with no con-
sumers, for the profiling workload. Remember that producers
issue 10k enqueue calls per second in the profile workload.
With BBQ and BBQ-JNI, the enqueue latency slowly increases:
147.9ns and 176.4ns with 1 thread, respectively, to 965.6ns
and 914.3ns with 94 threads, respectively. Up to 44 produc-
ers, EvictingQueue and CircularFifoQueue perform similar to
BBQ variants. With more than 44 producers, however, their en-
queue latency quickly increases up to 70 µs (72x higher than
BBQ). From Fig. 10a, we know that their maximum enqueue
throughput is about 450kop/s. Hence, these queues already
reached throughput limit with 44 producers, and any addi-
tional producers can only increase the latency. We believe the
spike at 95 threads (BBQ with 5.1µs and BBQ-JNI with 2.0µs)

2 24 48 72 96
#Producers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

(a) MPNC complex

2 23 47 71 95
#Producers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

(b) MPSC complex

2 24 48 72 96
#Producers

102

104

La
te

nc
y

(n
s)

(c) MPNC profiling

2 23 47 71 95
#Producers

102

104

La
te

nc
y

(n
s)

(d) MPSC profiling

EvictingQueue
CircularFifoQueue
BBQ
BBQ-JNI

Figure 10: Cross comparison results for drop old mode on arm-96T.

may caused by garbage collection, but further investigation is
necessary.

Enq-deq interference. We now introduce a single consumer
to understand the interference of dequeue on the enqueue
operations. Ideally, the enqueue operations should incur a
small overhead (latency) to the profiled program; and this
overhead should be minimally affected by concurrent dequeue
calls. Moreover, if enqueue calls interfere with dequeue calls
too frequently, more data may be dropped, i.e., overwritten
before being consumed.

Figure 10b shows the enqueue and dequeue throughput
(marked with • and×, respectively) for the complex workload.
Comparing Figs. 10a and 10b, we observe that the enqueue
throughput of BBQ is similar in both figures and of BBQ-JNI
is similar up to 47 threads, but after that it drops to about
1.89 · 106 op/s. The enqueue throughput of EvictingQueue
and CircularFifoQueue is initially lower when a consumer
is concurrently calling dequeue. The reason for this lower
enqueue throughput can explained by observing the difference
between enqueue and dequeue in Fig. 10b.

First, note that with more than a few producers, the enqueue
and dequeue throughput of each queue do not match, i.e., the
consumer is not fast enough to read out all the data before
the producers start overwriting the oldest entries. Also note
that the more the enqueue throughput of EvictingQueue and
CircularFifoQueue recovers (by increasing producers), the
lower is the dequeue throughput. Once their throughput is
back to the level of Fig. 10a with 15 threads, their dequeue
throughput is no more than 4.92 ·105 op/s. In contrast, BBQ
and BBQ-JNI sustain a much higher dequeue throughput up to
46 threads (2.89 ·106 op/s and 5.07 ·106 op/s, respectively).

Figure 10d shows the enqueue latency for the profiling work-
load. BBQ and BBQ-JNI provide enqueue latencies varying
from 730.6ns and 519.9ns with 2 producers, respectively, up
to 1082ns and 9503ns with 95 producers — we ignore the
noisy region with 81 producers. Comparing the results of
Figure 10c and Figure 10d reveal that the enqueue latency
of EvictingQueue and CircularFifoQueue, for example with
8 producers increase by 124.97 times when adding a single
consumer with a relatively low dequeue frequency.

The latency increases as well as the throughput decreases
of BBQ-JNI after 47 producers could be related to the JNI
overhead of calling C code from Java.

128 256 512 1024 2048 4096 8192
Buffer size

0

2

4

Th
ro

ug
hp

ut
 (M

p/
s)

bbq
dpdkrb

Figure 11: Throughput comparison between BBQ or DPDK
ring buffer.

6.3 Macrobenchmarks

We now explore three benchmarks that represent the real-
world usage queues.

6.3.1 DPDK’s End-to-end Benchmark

We replace the ring buffer in DPDK’s event library [12] and
network driver [11] with BBQ, and run the multiprocess bench-
mark [8] from the DPDK Test Suite [10] (DTS). The bench-
marks consists of one server process receiving and distributing
packets, and two client processes performing level-2 packet
forwarding [7]. These processes run on the device under test
(DUT), our x86-88T machine. The tester and traffic generator
TRex [29] run on our x86-96T machine. The packet size is
64 bytes (along with the UDP header) as well as the entry
size of the queue. The versions of DPDK, DTS, and TRex are
21.08, 21.02, and 2.92, respectively. We report the end-to-end
throughput (in million packets per second) measured by the
traffic generator.

Figure 11 shows our experimental results. BBQ provides
1.5x higher throughput with different buffer sizes in the driver.
We observed no further improvements with larger buffer sizes,
indicating that the ring buffer may not be a bottleneck any
more. We also replaced the so-called software queue in the
multiprocess benchmark, and observed no improvement.

6.3.2 Linux io_uring

Linux io_uring [13] is a new asynchronous I/O [31] API
for kernel-user space communication. It consists of two ring
buffers, one for request submissions (SQ) and another for com-
pletion confirmations (CQ). It supports batched submission
and batched confirmations with configurable batch sizes [18].

32 64 128 256 512 1024
SQ size

102

La
te

nc
y

(n
s/

re
q)

bbq
io_uring

(a) Batchsize = 1

32 64 128 256 512 1024
SQ size

102

103 bbq
io_uring

(b) Batchsize ∈ [1, 32]

Figure 12: Latency per request comparison of BBQ and Linux
io_uring on x86-88T.

We port io_uring from Linux kernel (v5.14-rc6) [17] to
userspace, omitting I/O related functionality and replacing its
ring buffers with BBQ. To avoid unstable results, we disable
the option of overflowing entries into an additional linked list.
We set the CQ size to twice the SQ size as recommended [21].
Our benchmark runs three threads: The first submits request
batches (via SQ); the second (representing the kernel) con-
sumes them and immediately produces confirmations (via
CQ); and the third consumes the confirmation batches. We
configure submission and confirmation batches with size 1 or
with a random value from 1 to 32. Each experiment runs 10
times, measuring the time to submit 1M requests.

Figure 12 shows a significant improvement of the latency
per request when using BBQ. For example, with batch size
of 1 and SQ size of 32 and 1024, BBQ yields 6.7x and 6.9x
lower latency than the original ring buffer, respectively. For
random batch size and the same SQ sizes, BBQ yields even
lower latencies: 20.9x and 50.5x, respectively.

6.3.3 LMAX Disruptor Benchmarks

Disruptor [23] is concurrency mechanism used for high-
performance financial exchange. Its core component is a ring
buffer. We compare its throughput with the Java and JNI
versions of BBQ with three official Disruptor benchmarks:
OneToOneThroughputTest, ThreeToOneThroughputTest,
and OneToThreeThroughputTest. We modify these bench-
marks to support not just three, but more producers or con-
sumers. Apart from this modification, all other parameters
(e.g., number of iterations, sleep time between operations,
number of repetitions) are unchanged.

Disruptor can randomly change the batch size based on the
workload. To make the comparison as fair as possible, we first
run the benchmark with Disruptor to get the average batch
size used, and then run BBQ with that batch size. Figure 13
shows the throughput of Disruptor, BBQ, and the baseline
Java queue (java.util.concurrent.BlockingQueue) for
several scenarios. The number on each bar refers to the (aver-
age) batch size, and the label pPcC indicates the number of
producers (p) and consumers (c).

In the 1P1C scenario, Disruptor yields almost 3x higher
throughput than the Java queue (3 Mop/s versus 1.3 Mop/s).
BBQ and BBQ-JNI, however, yield an order of magnitude

1P1C 2P1C 4P1C 8P1C 16P1C 32P1C 1P2C 1P4C 1P8C 1P16C 1P32C
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (b

at
ch

/s
) 1e7

1 1 1 1 1 1 1 1 1 1 17 1 2 4 29 28
4 2 1 1 1

7
1

2 4 29 28
4 2 1 1 1

7
1 2 4 29 28 4 2 1 1 1

Queue
Disruptor
BBQ
BBQ-JNI

Figure 13: Throughput comparison of BBQ and BBQ-JNI
against LMAX Disruptor on x86-88T.

higher throughput (14.1 Mop/s and 12.1 Mop/s, respectively).
The higher performance of BBQ over BBQ-JNI is due to the
JNI call overheads. With 8 producers, the difference between
Disruptor and BBQ is lower (2.2 Mop/s and 3.7 Mop/s, respec-
tively). BBQ-JNI yields 3x Disruptor’s throughput (6.7 Mop/s)
due to its use of FAA. With 32 producers, BBQ and BBQ-
JNI again outperform Disruptor by an order of magnitude
(3.0 Mop/s, 3.3 Mop/s, and 0.6 Mop/s, respectively).

With a single producer and multiple consumers, BBQ-JNI
has no opportunity to gain performance by using FAA. Due
to that, its performance pays the penalty of the JNI call
overheads. Nevertheless, BBQ still outperforms Disruptor in
most configurations. For example, BBQ yields 1.23x higher
throughput than Disruptor with 2 consumers (1P2C); and
1.68x higher throughput with 8 consumers. With 32 con-
sumers, Disruptor yields 1.42x higher throughput than BBQ.

7 Conclusion

We presented BBQ, a novel ringbuffer design that dramati-
cally reduces the enq-deq interference by splitting the entire
ringbuffer into multiple blocks. BBQ is applicable to a large
spectrum of scenarios, from exchanging data to profiling,
with single or multiple producers/consumers, sending fixed-
or variable-sized entries, among others. Our experimental re-
sults show that BBQ outperforms several industrial ringbuffers
(e.g., DPDK, LMAX Disruptor, Linux io_uring, Meta’s Folly
queue) in the great majority of workloads.

To support modern architectures such as Armv8.1, we veri-
fied and optimized BBQ with a model checker for weak mem-
ory models. Even though far from sound, verification with
model checkers has proven a valuable, low-cost method of
catching bugs.

Currently, our io_uring benchmark evaluates whether BBQ
is promising for such scenarios without involving kernel de-
tails. In the future, we plan to port BBQ to kernel space to
replace Linux io_uring.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
insightful comments. We specially thank Bohdan Trach for
the helpful discussions and for proofreading this manuscript.

References

[1] Apache Commons. http://commons.apache.org/.

[2] Arm A64 Instruction Set Architecture. https:
//developer.arm.com/documentation/ddi0596/
2021-09.

[3] Arm architecture reference manual armv8, for a-
profile architecture. https://developer.arm.com/
documentation/ddi0553/latest.

[4] Boost C++ Libraries. https://www.boost.org/.

[5] BPF ring buffer. https://www.kernel.org/doc/
html/latest/bpf/ringbuf.html.

[6] C++ Atomic operations library. https://en.
cppreference.com/w/cpp/atomic/atomic.

[7] Cisco Layer Two Forwarding (Protocol) "L2F". https:
//datatracker.ietf.org/doc/html/rfc2341.

[8] Client-Server Multi-process Example. https:
//doc.dpdk.org/guides/sample_app_ug/multi_
process.html.

[9] Data Plane Development Kit. https://www.dpdk.
org/.

[10] Data Plane Development Kit Test Suite. https://doc.
dpdk.org/dts/gsg/.

[11] dpdk/drivers/net/ring. https://github.com/DPDK/
dpdk/tree/main/drivers/net/ring.

[12] dpdk/lib/eventdev. https://github.com/DPDK/
dpdk/tree/main/lib/eventdev.

[13] Efficient IO with io_uring. https://kernel.dk/io_
uring.pdf.

[14] Folly: Facebook Open-source Library. https://
github.com/facebook/folly.

[15] Guava: Google Core Libraries for Java. https://
github.com/google/guava.

[16] Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-sdm.html.

[17] io_uring source code. https://elixir.bootlin.
com/linux/v5.14-rc6/source/fs/io_uring.c.

[18] io_uring_enter - initiate and/or complete asynchronous
I/O. https://unixism.net/loti/ref-iouring/
io_uring_enter.html.

[19] Java Development Kit. https://jdk.java.net/.

[20] Java Native Interface Specification. https:
//docs.oracle.com/en/java/javase/11/docs/
specs/jni/intro.html.

[21] liburing. https://github.com/axboe/liburing.

[22] Linux Kernel Circular Buffers. https:
//www.kernel.org/doc/html/latest/core-api/
circular-buffers.html.

[23] LMAX Disruptor: A High Performance Inter-
Thread Messaging Library. https://github.com/
LMAX-Exchange/disruptor.

[24] Lockless Ring Buffer Design. https:
//www.kernel.org/doc/Documentation/trace/
ring-buffer-design.txt.

[25] MPMC Queue. https://github.com/facebook/
folly/blob/main/folly/MPMCQueue.h.

[26] perf: Linux profiling with performance counters. https:
//perf.wiki.kernel.org/index.php/Main_Page.

[27] Producer/consumer synchronization
modes. https://doc.dpdk.org/
guides/prog_guide/ring_lib.html#
producer-consumer-synchronization-modes.

[28] RISC-V. https://riscv.org/.

[29] TRex: Realistic Traffic Generator. https://trex-tgn.
cisco.com/.

[30] Unread entries potentially lost in buf_ring after ABA
condition. https://bugs.freebsd.org/bugzilla/
show_bug.cgi?id=246475.

[31] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty,
and Janet Morgan. Asynchronous i/o support in linux
2.5. In Proceedings of the Linux Symposium, pages
371–386, 2003.

[32] Damian Dechev, Peter Pirkelbauer, and Bjarne Strous-
trup. Understanding and effectively preventing
the ABA problem in descriptor-based lock-free de-
signs. In 2010 13th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pages 185–192. IEEE, 2010.

[33] Maurice Herlihy and Nir Shavit. The art of multiproces-
sor programming. Morgan Kaufmann, USA, 2011.

[34] Maurice P Herlihy and Jeannette M Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

http://commons.apache.org/
https://developer.arm.com/documentation/ddi0596/2021-09
https://developer.arm.com/documentation/ddi0596/2021-09
https://developer.arm.com/documentation/ddi0596/2021-09
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://www.boost.org/
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://datatracker.ietf.org/doc/html/rfc2341
https://datatracker.ietf.org/doc/html/rfc2341
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://www.dpdk.org/
https://www.dpdk.org/
https://doc.dpdk.org/dts/gsg/
https://doc.dpdk.org/dts/gsg/
https://github.com/DPDK/dpdk/tree/main/drivers/net/ring
https://github.com/DPDK/dpdk/tree/main/drivers/net/ring
https://github.com/DPDK/dpdk/tree/main/lib/eventdev
https://github.com/DPDK/dpdk/tree/main/lib/eventdev
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/google/guava
https://github.com/google/guava
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://elixir.bootlin.com/linux/v5.14-rc6/source/fs/io_uring.c
https://elixir.bootlin.com/linux/v5.14-rc6/source/fs/io_uring.c
https://unixism.net/loti/ref-iouring/io_uring_enter.html
https://unixism.net/loti/ref-iouring/io_uring_enter.html
https://jdk.java.net/
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html
https://github.com/axboe/liburing
https://www.kernel.org/doc/html/latest/core-api/circular-buffers.html
https://www.kernel.org/doc/html/latest/core-api/circular-buffers.html
https://www.kernel.org/doc/html/latest/core-api/circular-buffers.html
https://github.com/LMAX-Exchange/disruptor
https://github.com/LMAX-Exchange/disruptor
https://www.kernel.org/doc/Documentation/trace/ring-buffer-design.txt
https://www.kernel.org/doc/Documentation/trace/ring-buffer-design.txt
https://www.kernel.org/doc/Documentation/trace/ring-buffer-design.txt
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doc.dpdk.org/guides/prog_guide/ring_lib.html#producer-consumer-synchronization-modes
https://doc.dpdk.org/guides/prog_guide/ring_lib.html#producer-consumer-synchronization-modes
https://doc.dpdk.org/guides/prog_guide/ring_lib.html#producer-consumer-synchronization-modes
https://riscv.org/
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=246475
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=246475

[35] David Hovemeyer, William Pugh, and Jaime Spacco.
Atomic instructions in java. In European Confer-
ence on Object-Oriented Programming, pages 133–154.
Springer, 2002.

[36] Michalis Kokologiannakis, Azalea Raad, and Viktor
Vafeiadis. Model checking for weakly consistent li-
braries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2019, pages 96–110, New York, NY,
USA, 2019. Association for Computing Machinery.

[37] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton
Podkopaev, and Viktor Vafeiadis. Making weak memory
models fair. Proc. ACM Program. Lang., 5(OOPSLA),
oct 2021.

[38] Adam Morrison and Yehuda Afek. Fast concurrent
queues for x86 processors. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, pages 103–112,
New York, NY, USA, 2013. Association for Computing
Machinery.

[39] Ruslan Nikolaev. A Scalable, Portable, and Memory-
Efficient Lock-Free FIFO Queue . https://github.
com/rusnikola/lfqueue.

[40] Ruslan Nikolaev. A scalable, portable, and memory-
efficient lock-free fifo queue. In 33rd International Sym-
posium on Distributed Computing (DISC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[41] Ruslan Nikolaev and Binoy Ravindran. Wcq: A fast
wait-free queue with bounded memory usage. In
Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’22, page 461–462, New York, NY, USA, 2022.
Association for Computing Machinery.

[42] Jonas Oberhauser, Rafael Lourenco de Lima Chehab,
Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Ober-
hauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. Vsync: Push-button
verification and optimization for synchronization primi-
tives on weak memory models. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 2021, pages 530–545, New York, NY,
USA, 2021. Association for Computing Machinery.

[43] Or Ostrovsky and Adam Morrison. Scaling concurrent
queues by using htm to profit from failed atomic op-
erations. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pages 89–101, 2020.

[44] Nicholas A Solter and Scott J Kleper. Professional C++.
John Wiley & Sons, 2005.

[45] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagi-
mont. The lock holder and the lock waiter pre-emption
problems: Nip them in the bud using informed spinlocks
(i-spinlock). In Proceedings of the Twelfth European
Conference on Computer Systems, pages 286–297, 2017.

[46] Bill Venners. The java virtual machine. Java and the
Java virtual machine: definition, verification, validation,
1998.

[47] Chaoran Yang and John Mellor-Crummey. A wait-free
queue as fast as fetch-and-add. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 1–13, 2016.

https://github.com/rusnikola/lfqueue
https://github.com/rusnikola/lfqueue

	Introduction
	Background and Related Work
	Design of BBQ
	The Block-based Approach
	BBQ from a Bird's-eye View
	Two-Level Control Variables

	Implementation of BBQ
	Structure
	Operations
	Successful allocation/reservation
	Advancing to the next block

	Drop-old Mode
	Variable-sized Entries
	Other Implementation Details

	Verification and Optimization of BBQ
	Evaluation
	Environment Setup
	Microbenchmarks
	BBQ Parameters and Design Choices
	State-of-the-art Comparison: Retry-new Mode
	State-of-the-art Comparison: Drop-old Mode

	Macrobenchmarks
	DPDK's End-to-end Benchmark
	Linux io_uring
	LMAX Disruptor Benchmarks

	Conclusion

