
BWoS: Formally Verified Block-based Work
Stealing for Parallel Processing

Jiawei Wang1 2, Bohdan Trach1, Ming Fu1, Diogo Behrens1, Jonathan Schwender1,
Yutao Liu1, Jitang Lei1, Viktor Vafeiadis3, Hermann Härtig2, Haibo Chen1 4

[1] [2] [3]

MPI-SWS

[4]

Parallel Processing Scenarios

2

Parallel Processing Scenarios

2

Parallel Processing Scenarios

2

q
u

eu
e

put

get

Existing Approaches

Queues for Parallel Processing

FIFO MPMC queue

3

q
u

eu
e

Per-core Queue

q
u

eu
e

Does not scale
q

u
eu

e

q
u

eu
e

put

get
get

put

Existing Approaches

Queues for Parallel Processing

FIFO MPMC queue

3

q
u

eu
e

Per-core Queue

q
u

eu
e

Work-Stealing Queue

Does not scale Fast but imbalanced
q

u
eu

e

q
u

eu
e

put

get
get

put

q
u

e
u

e

q
u

e
u

e

q
u

e
u

e

get

put

steal

Existing Approaches

Queues for Parallel Processing

FIFO MPMC queue

3

Work Stealing

q
u

eu
e

q
u

eu
e

q
u

eu
e

put

get
①

worker

① A worker (thread) puts on / gets from its own queue.

…

…

4

Work Stealing

q
u

eu
e

q
u

eu
e

q
u

eu
e

put

get
steal①

②

worker

① A worker (thread) puts on / gets from its own queue.

② When its queue is empty, it selects another queue…

…

…

4

Work Stealing

③ and try to steal from it.

q
u

eu
e

q
u

eu
e

q
u

eu
e

put

get
steal①

③

②

worker

① A worker (thread) puts on / gets from its own queue.

② When its queue is empty, it selects another queue…

…

…

4

Work Stealing Becomes the Bottleneck

5

Example 1: GoJson Object Decoding Benchmark

Decoding Scheduling GC Worker CPU Idle

51%

7%
20%

5%

Work Stealing Becomes the Bottleneck

5

Example 1: GoJson Object Decoding Benchmark

Decoding Scheduling GC Worker CPU Idle

51%

7%
20%

5%

Work Stealing Becomes the Bottleneck

Example 2: Experience of Rust Tokio’s author

[1] Making the Tokio scheduler 10x faster (https://tokio.rs/blog/2019-10-scheduler)

[1]

5

q
u

eu
e

per-core queue

q
u

eu
e

work-stealing queue

Does not scale Fast but imbalanced Not fast enough
q

u
eu

e

q
u

eu
e

put

get
get

put

q
u

e
u

e

q
u

e
u

e

q
u

e
u

e

get

put

steal

existing works

Queues for Parallel Processing

FIFO MPMC queue

6

Sources of the Overhead

q
u

eu
e

q
u

eu
e

q
u

eu
e …

put

get
steal①

③

②

FIFO / LIFO

Random, best of two, NUMA-aware, Batching …

A) Cost of Synchronization Operations

B) Overhead due to Victim Selection (see paper)

C) Interference Cost with Thieves

worker

③ and try to steal from it.

① A worker (thread) puts on / gets from its own queue.

② When its queue is empty, it selects another queue…

1

5

Sources of the Overhead

A) Cost of Synchronization Operations

existing works
sequential queues

(no barriers)

8

Sources of the Overhead

A) Cost of Synchronization Operations

• Throughput of existing works is far away from

sequential queues (theoretical upper bound)

existing works
sequential queues

(no barriers)

~4-5x
slower

8

Sources of the Overhead

A) Cost of Synchronization Operations

• As steals may happen at any time

strong atomic barriers are introduced

• Throughput of existing works is far away from

sequential queues (theoretical upper bound)

existing works
sequential queues

(no barriers)

~4-5x
slower

8

Sources of the Overhead

C) Cost of Interference with Thieves
q

u
eu

e

put

get steal

• Thieves affect the throughput of the owner

9

Sources of the Overhead

C) Cost of Interference with Thieves
q

u
eu

e

put

get steal

• Thieves affect the throughput of the owner

• Stealing 1% of the elements:

Diff. NUMA: 25.2%

Same NUMA: 17.8%

9

q
u

e
u

e

per-core queue

q
u

e
u

e

work-stealing queue block-based
work-stealing queue

Fast & Balanced

q
u

e
u

e

q
u

e
u

e

put

get
get

put

q
u

eu
e

q
u

eu
e

q
u

eu
e

get

put

steal get

put

steal

existing works our work

BWoS — Block-based Work Stealing

FIFO MPMC queue

Does not scale Fast but imbalanced Not fast enough
10

BWoS — Block-based Work Stealing

put

get
steal①

③

②

worker

FIFO / LIFO

Random, best of two, NUMA-aware, Batching …

Block-level synchronization: no barriers inside

blocks

Randomized Victim Selection Policy

No Interference when stealing from a

different block

③ and try to steal from it.

① A worker (thread) puts on / gets from its own queue.

② When its queue is empty, it selects another queue…
…

11

BWoS — Block-based Work Stealing

put

get
①

worker

Blocks

12

BWoS — Block-based Work Stealing

put

get
①

worker

Blocks

Workload items

12

BWoS — Block-based Work Stealing

put

get
①

0

1

2

3

4

5

worker

Blocks

Blocks

Workload items

12

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

4

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

13

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

4

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

• When crossing block boundary: use barriers

(takeover, grant)

front

back

13

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

4

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

• When crossing block boundary: use barriers

(takeover, grant)

back

1

13

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

• When crossing block boundary: use barriers

(takeover, grant)

1

13

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

• When crossing block boundary: use barriers

(takeover, grant)

• Within block boundaries: use relaxed atomics, no

barriers (fast path)

1

Put position

Get position

(no barriers)

14

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

• When crossing block boundary: use barriers

(takeover, grant)

• Within block boundaries: use relaxed atomics, no

barriers (fast path)

1

Put position

Get position

(no barriers)

14

BWoS — Block-based Work Stealing

0

1

2

3

4

5

0

5

thieves

owner

A) Cost of Synchronization Operations

• Block-level synchronization: Each block is owned

either by the owner or by the thieves

• When crossing block boundary: use barriers

(takeover, grant)

• Within block boundaries: use relaxed atomics, no

barriers (fast path)

1

Put position

Get position

(no barriers)

14

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
①

worker

M

15

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
①

• Each block has a dedicated metadata instance

worker

M

mb

mb

mb

mb

15

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
①

• Each block has a dedicated metadata instance

• Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

• Thieves read only block-level metadata, and steal from

longer queues with higher probability

worker

M

mb

mb

mb

mb

15

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
steal①

②

• Each block has a dedicated metadata instance

• Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

• Thieves read only block-level metadata, and steal from

longer queues with higher probability

worker

M M M

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

15

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
steal①

②

• Each block has a dedicated metadata instance

• Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

• Thieves read only block-level metadata, and steal from

longer queues with higher probability

worker

M M M

rnd_choose③

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

15

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
steal①

②

• Each block has a dedicated metadata instance

• Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

• Thieves read only block-level metadata, and steal from

longer queues with higher probability

worker

M M M

rnd_choose③

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

try
steal

15

BWoS — Block-based Work Stealing

B) Overhead due to Victim Selection

put

get
steal①

②

• Each block has a dedicated metadata instance

• Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

• Thieves read only block-level metadata, and steal from

longer queues with higher probability

worker

M M M

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

mb

rnd_choose③

try
steal

✓

15

BWoS — Block-based Work Stealing

C) Cost of Interference with Thieves

put

get

• Fixed by Block-Level Synchronization and Randomized Stealing

steal

mb

mb

mb

mb

16

BWoS — Block-based Work Stealing

C) Cost of Interference with Thieves

put

get

• Fixed by Block-Level Synchronization and Randomized Stealing

• Thieves and the owner update different metadata, thus
interference is reduced

• Thieves and the owner are likely to operate on different blocks

steal

mb

mb

mb

mb

16

VSync Framework

BWoS — Verification and Optimization

17

VSync Framework

Algorithms in C

BWoS — Verification and Optimization

17

VSync FrameworkClient Code

Algorithms in C

trigger edge cases
with assertions

BWoS — Verification and Optimization

17

Properties:

• Memory safety

• Data race freedom

• Loop termination

• Consistency

VSync Framework

Verification

Client Code

Algorithms in C

trigger edge cases
with assertions

WMM Optimization

BWoS — Verification and Optimization

17

VSync FrameworkClient Code

Algorithms in C

trigger edge cases
with assertions

WMM Optimization

BWoS — Verification and Optimization

ABP

BWoS relaxed

BWoS SC

WMM Optimization Results

18

VSync FrameworkClient Code

Algorithms in C

trigger edge cases
with assertions

WMM Optimization

BWoS — Verification and Optimization

5.4x

ABP

BWoS relaxed

BWoS SC

WMM Optimization Results

18

Micro-benchmark Results

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

Compared against state-of-the-art work-stealing queues

19

Micro-benchmark Results

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

Compared against state-of-the-art work-stealing queues

Higher is better

19

Micro-benchmark Results

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

Compared against state-of-the-art work-stealing queues

Performs close to theoretical maximum

19

Micro-benchmark Results

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

Compared against state-of-the-art work-stealing queues

Summary: BWoS outperforms state-of-the-art queues by

1.6x – 10x without thieves, 1.6x - 30x with thieves.

10% stolen: up 30x throughput

19

BWoS in Go’s Runtime

Original

BWoS

GoJson Object Decoding Benchmark

Summary: GoJson benchmarks experience 28.2% speedup on average for Arm (see paper).
BWoS improves performance of real-world computational workloads.

20

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

BWoS in Rust Tokio Runtime

21

https://github.com/tokio-rs/tokio/pull/5283

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

BWoS in Rust Tokio Runtime

Higher is better

Lower is better

21

https://github.com/tokio-rs/tokio/pull/5283

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

BWoS in Rust Tokio Runtime

Summary: BWoS increases throughput by 12% with 7% lower latency and 61% lower CPU utilization.
BWoS improves performance of real-world IO servers.

+12%
-61%

21

We have published our changes for the Tokio runtime: https://github.com/tokio-rs/tokio/pull/5283

https://github.com/tokio-rs/tokio/pull/5283

Summary

• The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
• BWoS: Work Stealing (this work)
• BBQ: Producer-Consumer Queues (ATC’22)

Summary

• The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
• BWoS: Work Stealing (this work)
• BBQ: Producer-Consumer Queues (ATC’22)

• Verified software can be faster than unverified software.

Summary

• The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
• BWoS: Work Stealing (this work)
• BBQ: Producer-Consumer Queues (ATC’22)

• Verified software can be faster than unverified software.

Thanks!

